MAP Rain case study – Leeds City Council and storm Ciara

Case Study overview

Leeds City Council use MAP Rain to analyse historic rain events and to receive forecast rain alerts. This is a summary of the alerts generated for storm Ciara on the 9th and 10th February 2020 and compares actual rainfall against the alerts generated.

MAP Rain supports different type of rainfall alerts. The alerts for Leeds include:

  • Forecast rainfall alert (mm/hr). Generated when the forecast rainfall exceeds a threshold value
  • Current rainfall alert (mm/hr). Generated when the actual rainfall exceeds a threshold value
  • FEH rainfall alert (1 in X years). Generated when the FEH Return period alert exceeds a threshold value
  • MAP Rain constantly reviews and calculates these alerts every 5 minutes as new radar and forecast rainfall data is received. E-mails are sent to the Flood Management team according to a set of rules designed to limit the number of e-mails sent.

    Over the last two years, the Leeds City Council Flood Management team have been very pro-active in reviewing and adjusting these threshold values in light of historic flooding events. They have also adjusted the location of the monitoring points to correlate them more precisely to locations at risk.

    Quote from John Bleakley Group Engineer (Investigations) on the 18th Feb 2020.

    “One of the big successes from a surface water flooding impacts perspective (not river) for me was Meniscus after lots of tweaking. For Ciara we had hundreds of Meniscus warnings and they were pretty much spot on from where I sit, which means we can galvanise our efforts in those areas with more confidence in the future, contrast storm Dennis a week later, there were hardly any Meniscus rainfall alerts for our district which again, was borne out in reality by no flooding impacts in the Leeds District.”

    Actual rainfall depth – issued by Leeds City Council flood team on the 10th February

    The choropleth map shown below was created by the Leeds City Council flood team the day after the event using data from MAP Rain. The image was tweeted to residents the day after the storm and is a great example of the use of maps to communicate the location and depth of the rainfall that affected the community.

    MAP Rain FEH rain event Alerts

    For storm Ciara, MAP Rain generated alerts for 5 catchments and 18 monitoring points. These alerts were e-mailed to Leeds City Council and latest alert status was displayed on the MAP Rain dashboard.

    Alerts for the monitoring points were generated earlier than the catchment alerts and also changed more frequently. This is a consequence of the inherent averaging associated with the catchment alerts. The catchments aggregate the rainfall for all the underlying rainfall cells and this averaging, or smoothing, means they react slower to changes in the forecast rainfall.

    The two images below display the results for the first FEH Alerts generated for the storm. The left-hand image shows the first catchment alerts (shown in yellow). The right-hand image shows the first point-based alerts with their corresponding colour coded legend. The numbers are the calculated FEH rain event predicted for the catchment or point.

    The first monitoring point alerts were generated at approximately 09:45 on the 8th February with the majority generated from about 20:00 on the 8th, some 4-5 hours before the start of the heavy rain.

    The first catchment-based alerts were created later at about midday on the 9th February.

    Click here for more information on MAP Rain

    Home Energy platform upgrade – new Widget graphs

    Home Energy platform upgrade lets users create their own dashboards

    We have upgraded the Meniscus Calculation Engine (MCE) on our free-to-use Home Energy monitoring platform. We are phasing out of the existing Silverlight dashboard as it only runs on Internet Explorer over the next couple of months.

    Example of an MCE real-time widget


    This graph will update every 2 minutes.

    New Widget graphs and getting your API key

    The widgets let you easily create your own dashboards that you can configure yourselves.

    To use the widgets you will need your API key which is the first 16 characters of the email address that you used to create your account with us. Please note a couple of things.

  • THE API key is READ ONLY
  • if you make these widgets publicly available then your API key will be visible
  • If you would like to change your API key please send a mail to [email protected] and quote the e-mail address you use for your Home Energy account

    To create the widgets

    1. Go to the widget page
    2. In the “Create Widget – Enter API key” tab enter your API key
    3. Click Connect to Server
    4. In the “Create Widget – Meter Options” tab select the Items you want to display
      • For the Real time data use Electricity use – channel 1. This is the RAW data type with units of W
      • For the Half hour aggregated data for the three main channels then use Electricity use – channel 1 – HH. This is the CALC aggregated W data converted into kW
      • You can add any other Item that you want to display
    5. Select the Output type – I.e. line graph
    6. Add Item to the List
    7. In the “Create Widget – Date and Time options” tab select the time option you want. Don’t use too long a period as it will take a long long time to upload!
    8. In the “Create Widget – Update Options” tab select how often you want the widget updated – so for a two minute update enter 120 seconds

    When you are ready – select the Output HTML. This will generate the iframe code that is can be pasted into any HTML web page to generate the graph displayed.

    Create the Dashboard

    Follow these steps to create an HTML dashboard with the widgets you have created. This will give you a lot more visibility for the Home Energy platform.

  • When you have created the Output HTML that you want click the “Create Dashboard” tab
  • Click on “Add Widget” and copy the HTML iframe. This will create a new widget and you can add up to 4 different widgets on the one page and move them as you want
  • Click on “Add Header” to add a simple header to the page
  • Click on Copy HTML to create a copy of the dashboard as an HTML page. If you open this page then you can view the widgets you have created
  • For more information on the MCE widgets click here

    See an example of the MCE widget dashboard

    MAP IoT Entities – Introduction

    MAP IoT Entities – an Introduction

    MAP IoT Entities give you control on how to turn raw data from a sensor, device or …anything, into the analytics you want. Entities include Raw Items and Calc Items and both are contained in an Entity Template. This Entity Template is called as often as you want by importing configuration files. These config files include names and properties of the Entity and the properties for the Raw and Calc Items. On import, the Entity Template creates the Entity and the Raw and Calc Items and immediately starts processing any raw data that is available.

    This is the first of several articles that we will write on how to use MAP IoT Entities to deliver your IoT application.

    What are MAP IoT Entities?

    Raw Items
    A Raw Item contains the raw data that you upload into MAP. Raw data contains any Data Type that you want. If we don’t support the Data Type already (we support quite a range) then you can create your own Data Type – article on Data Types.

    Calculated Items
    A Calc Item contains the metrics that you want to create using your raw data. Rather than create all your analytics in one complex algorithm, our experience is that it it is easier, more flexible and quicker to create a number of seperate Calc Items that each do a specific part of the analytics.

    A core module of MAP is the Invalidator. This continually monitors the calculation time of all Items in MAP and dynamically builds a dependency tree of all Items. By defining the type of invalidation relevant to your Calc Item, you control when and how frequently your Items are updated and re-calculated. The default mode is to invalidate on change of latest calculation time. So, if the latest calculation time of a Raw or Calc Item in the Dependency Tree changes then other Calc Items that are dependent on that Item will automatically recalculate.

    What this means in practice is:

  • Step 1. New raw data is uploaded into a Raw Item in an Entity
  • Step 2. All Calc Items that depend on the Raw Item or any child Calc Item are also recalculated
  • Step 3. This all happens in seconds
  •  

    Why use MAP IoT Entities – what are the benefits?

    The key reason is simplicity. They are easy to use, easy to set up and offer a lot of flexibility.

    MAP is an integrated stack so we do all the complicated plumbing required to deliver the calculated metrics you want. So, all a developer needs to consider is:

  • 1. How to upload raw data from their device to MAP (API call or file drop are the best)
  • 2. How to extract data from MAP for use in their application/dashboard/UI (API call is best)
  • That’s it – MAP takes care of everything else!

    What is MAP?

    MAP stands for the Meniscus Analytics Platform and is MAP is our IOT Analytics Platform for delivering solutions at scale and at speed. It is an Integrated Analytics Stack so you can develop your solutions quicker and easier.

    More information on MAP IoT
    More information on MAP

    New MAP IoT Gateway device

    Our new IoT Gateway device makes it easier for developers to connect to MAP directly from devices.

    The gateway runs as a Windows Service on the IoT device or on a Raspberry Pi or a micro PC. It uses a MAP importer to push and pull data from the device directly into MAP. So, the gateway allows bi-directional flow of data making it possible to send instructions from MAP back to the IoT device.

    Within MAP, making use of our IoT Entity model, developers can create templates containing Items and Properties and add any calculation they want.

    For more information on MAP then click here

    MAP Rain – new forecast alert dashboard

    Our new MAP Rain alert dashboard now makes it much easier to keep track of forecast rain alerts for Points and Polygons in your area of interest. The alert dashboard updates every 5 minutes, as new rainfall data arrives, and updates the colour of your Points and Polygons depending on the level of flood risk. The alert dashboard also displays an animation of the forecast rainfall across the UK

    The new forecast alert dashboard provides a simple way to see the alert status of your Points and Polygons along with an annimation of the forecast rainfall for the next 36 hours. We have designed this as a simple way to monitor flooding risk 24/7.

    For a live demonstration of MAP Rain then click here and set Username and Password both to demo.

    Toggling between current (Query) view and new Alert view

    We have added a new button which switches between the existing view of the dashboard and the new Alert view.

    New Alert view

    The purpose of this new Alert view is to provide customers with a simplified 24/7 view of the rainfall and associated alerts in their area of interest.

    1. Click on the “Show Alarms” button to see the forecast state of your Points and Polygons
    2. The Alert colour will change as the alert state changes. The Points and Polygons will default to show the green Clear alert
    3. The dashboard refreshes every 5 minute so both the dashboard and the emailed alerts will be synchronised
    4. You can add an animation of the forecast rainfall for the next 36 hours. The animation shows the forecast rainfall for each hour and continuously replays. You can customise the speed of the update, the opacity of the image and the forecast duration
    5. You can stop the animation and use the Show Rainfall button to select historic or forecast rainfall for a particular time using the time slider that will appear. Note: The Points and Polygon alerts will not display historic colour changes, they only show show forecast alerts
    6. The forecast rainfall is displayed for the whole of the UK so you can have a better understanding of the rain that will impact your area of interest.
      Can switch back to the original dashboard view using the “Switch View” button.

    Lazy loading for processing large data sets

    Introduction

    This is part of a series of articles where we describe the way the Meniscus Analytics Platform (MAP) works. Theses articles jump into the features that make MAP different to other analytics applications by providing an Integrated Analytics Stack delivering real time analytics.

    This article investigate the benefits of lazy loading of data and why this is important in MAP

    What is lazy loading of data?

    Quite simply, it means only loading the part of the data that is required to deliver the information requested. In terms of how MAP works then this principle is used to limit the data input and output from the the underlying MongoDB database into MAP. Whilst this may sound like quite a simple and obvious principle to apply it isn’t always used. Many developers will know the principle when developing dashboard and user interfaces but it is more important when considering the back end database operation.

    Lazy loading is a design pattern commonly used in computer programming to defer initialization of an object until the point at which it is needed. It can contribute to efficiency in the program’s operation if properly and appropriately used. The opposite of lazy loading is eager loading. This makes it ideal in use cases where network content is accessed and initialization times are to be kept at a minimum, such as in the case of web pages.

    Source

    Why is lazy loading relevant in MAP?

    MAP ingests and processes very large volumes of near real time data, specifically data associated with weather. More importantly, MAP holds historic data so that we can deliver historic analytics as used in our MAP Rain solution.

    This means data IO is a key factor in delivering the lighting fast calculation speeds that MAP delivers. So, anything that can improve these IO times is of huge importance to MAP. Lazy loading reduces data volumes extracted and then written back to the database and so improves data IO times.

    About MAP

    MAP is an Integrated Analytics Stack providing a framework for users to create and deploy calculations at scale using any source of raw data. MAP is based on IOT principles and uses Items as the underlying building blocks to store either RAW or CALCulated data. So, users create an Entity Template or Thing using these Items and then replicate this template hundreds of thousands of times using an ItemFactory.

    For more information on MAP then click here

    Support for rich and extensible data types

    Introduction

    This is part of a series of articles where we describe the way the Meniscus Analytics Platform (MAP) works. Theses articles jump into the features that make MAP different to other analytics applications by providing an Integrated Analytics Stack delivering real time analytics. IN this article we talk about extensible data types.

    This article discusses how and why having extensible data types is a real benefit when developing your analytics applications

    Why are extensible data types important?

    Being able to use a wide variety of ‘standard’ data types, but also to create your own, delivers lots of benefits.

    • Provides flexibility. During the import stage you can re-process and store the initial raw data into a ‘pre-processed’ data type. When you want to use this data to deliver a calculation or other use then the data is already configured and available in exactly the format you want
    • Greatly increases data processing and calculation times.
    • Extensible data types give you the ability to control how you store and process your raw data

    Examples of data types supported by MAP

    We have a number of ‘standard’ extensible data types already configured in MAP but there is no limit to the number or variety that you can create.

    • Data Grid. One of the most important for our MAP Rain solution. Processes data in any size of two dimensional grid. Used for radar and forecast rainfall data, satellite imagery and the like
    • Block Grid. Used in conjunction with a Data Grid. Breaks a two dimensional Data Grid into a smaller three dimensional Block. Used for speeding up the processing of Data Grids by ensuring MAP only processes relevant data. See article on lazy loading of data sets
    • Vector Grid. Similar to a Data Grid but provides a two dimensional grid but includes vector and direction data as well. Used for processing grids of forecast wind speed and direction data.
    • Rainfall Location. Holds the location of a point of interest (Latitude and Longitude) as well as the current and historic rainfall data for that Location. Used in MAP Rain
    • Float – standard time series. This is a standard data type for processing time series data. Contains a Date/Time Value pair
    • Journey. Used to create and store a sequence of locations along the route of a journey. We use this data type to predict rainfall along this route using our Hyperlocal rainfall product

    Examples of data types

    About MAP

    MAP is an Integrated Analytics Stack providing a framework for users to create and deploy calculations at scale using any source of raw data. MAP is based on IOT principles and uses Items as the underlying building blocks to store either RAW or CALCulated data. So, users create an Entity Template or Thing using these Items and then replicate this template hundreds of thousands of times using an ItemFactory.

    For more information on MAP then click here

    Benefits of a dynamically constructed dependency tree

    Introduction

    This is part of a series of articles where we describe the way the Meniscus Analytics Platform (MAP) works. Theses articles jump into the features that make MAP different to other analytics applications by providing an Integrated Analytics Stack delivering real time analytics. This article discusses the benefits of a dynamically constructed dependency tree.

    What is a dynamic dependency tree?

    A dependency tree is a list or tree of the way that any Item links to other Items. We use this to manage and understand which Items are required when calculating another Item. So, if Item 1 requires Item 3 and Item 2004 to calculate then any change in Item 3 or Item 2004 will place Item 1 on the calculation queue to be recalculated. The process of managing the Items placed on the queue is critical to MAP and we have a separate Invalidator module specifically to do this.

    While our old MCE analytics platform held a dependency tree it was not dynamic and so, not really a scalable solution. MAP uses a dynamic dependency tree so that as new Items are added then MAP automatically creates its own tree by learning from the calculations as they run. This in turn means that MAP is scalable and can run on any size of database.

    Benefits of using a dependency tree

    • Calculation speed. By knowing the relation between each and every Item ensures MAP processes data in the most optimal way possible. This is turn helps to ensure MAP can deliver lightning fast calculation speeds
    • Automated. Being an automated process means that a developer can just leave MAP to get on and do it’s own ‘thing’ whilst they focus on the critical aspects of developing their application

    About MAP

    MAP is an Integrated Analytics Stack providing a framework for users to create and deploy calculations at scale using any source of raw data. MAP is based on IOT principles and uses Items as the underlying building blocks to store either RAW or CALCulated data. So, users create an Entity Template or Thing using these Items and then replicate this template hundreds of thousands of times using an ItemFactory.

    For more information on MAP then click here

    Using Data Blocks and Data Versioning to deliver real time analytics

    Introduction

    This is part of a series of articles where we describe the way the Meniscus Analytics Platform (MAP) works. Theses articles jump into the features that make MAP different to other analytics applications by providing an Integrated Analytics Stack delivering real time analytics. In this article we discuss Data Blocks and Data Versioning.

    In delivering real time analytics, disk IOPS (Input/output Operations Per Second) is one of the main rate limiting steps in achieving the calculation speeds required when processing high volume and high velocity raw data. An example of such a data is radar rainfall data where new values covering a large area arrive every 5 minutes.

    To help reduce disk IOPS, we developed the concepts of Data Blocks and Data Versioning into MAP to drastically speed up data access, increase calculation speed and reduce the volume of data written back to the database.

    Data Blocks

    Rather than loading and persisting all data for an Item, data can be broken up into chunks called Blocks. So, only the chunks of data that are demanded for a query, or as an input to a calculation, are loaded from the database (i.e. delay loading), and only the chunks of data that actually change need to be persisted. Blocks are typically used with unbounded, time-related data such as sample arrays, where the size of a Block is limited and the maximum number of Block samples depends on the size of a sample. This provides efficiencies in real-time processing, whereby data changes are localised and typically at the end of the data.

    Data Blocks are transparent to the user. It is purely an internal mechanism to reduce traffic to/from the database. When requested or persisted, Data Blocks are held in memory for a time. This ensures future retrieval is temporarily faster as the data is expected to be in demand.

    Data Versioning

    Data Blocks are complimented by the MAP concept of Data Versioning. All Item data in MAP is versioned, including Blocks (as such referred to as child data). A version is simply a unique timestamp. It allows users to query for the relative age of data. Specifically, when it last changed, and for calculated Items when the last calculation started and completed. A client application can then tell if data has changed without having to load the data itself. There are additional non-data versions on an Item. I.E when its properties or list of child items last changed.

    It is this versioning technique that allows MAP to efficiently detect when calculated items need recalculating (referred to as dirtying as calculation).

    About MAP

    MAP is an Integrated Analytics Stack providing a framework for users to create and deploy calculations at scale using any source of raw data. MAP is based on IOT principles and uses Items as the underlying building blocks to store either RAW or CALCulated data. So, users create an Entity Template or Thing using these Items and then replicate this template hundreds of thousands of times using an ItemFactory.

    For more information on MAP then click here

    MAP Sewer – creation of simplified sewer network models

    New MAP Sewer capability speeds up the creation of the simplified sewer network models. This makes is quicker and easier to set up our near real time predictive modelling of the sewer network.

    We have been working to speed up the creation of the simplified sewer network models in MAP Sewer so that we can rapidly create new models for new catchments. We have now automated the process of creating the main simplified model, and all the relevant geometries, from the detailed GIS layers that make up the ‘standard’ detailed models used by most water companies.

    The objective of this work is:

  • Generate the MAP Sewer model inputs from the detailed model
  • To do this in an automated way using a combination of QGIS and PYTHON scripts
  • The methodology includes:

  • Derive location of Pumping Stations, Combined Sewer Overflows, Detention tanks, Weirs and Sluices
  • For each Pumping Station, use QGIS flow trace to identify the upstream conduits
  • Identify the sub-catchments associated to these upstream conduits
  • Dissolve the sub-catchments into one large sub-catchment
  • Aggregate the key sub-catchments properties
  • Calculate the main trunk sewer path and aggregate sewer length, gradient and diameter
  • Create the MAP Sewer nodes
  • The process takes several hours to run and the outputs are:

  • MAP Sewer configuration files. These are CSV files for each geometry. I.e. Pumping Stations, Combined Sewer Overflows, Detention tanks, Weirs and Sluices
  • One sub-catchment file containing all the dissolved sub-catchments. this is a KML file
  • Once this is done then we can add some of the pumping attributes to the Pumping Station and Detention Tank geometry files and then load all the files into MAP Sewer from the dashboard. MAP Sewer then creates the geometries in a few minutes and the whole catchment is calculated in 20 minutes – this includes over 2 years of historic data all at 5 minute periodicity. We can now start to validate the model and to feed it with real time and forecast rainfall data.